Extensions 1→N→G→Q→1 with N=C3×C3⋊Dic3 and Q=C22

Direct product G=N×Q with N=C3×C3⋊Dic3 and Q=C22
dρLabelID
C2×C6×C3⋊Dic3144C2xC6xC3:Dic3432,718

Semidirect products G=N:Q with N=C3×C3⋊Dic3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3×C3⋊Dic3)⋊1C22 = S3×C3⋊D12φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3248+(C3xC3:Dic3):1C2^2432,598
(C3×C3⋊Dic3)⋊2C22 = S3×D6⋊S3φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3488-(C3xC3:Dic3):2C2^2432,597
(C3×C3⋊Dic3)⋊3C22 = D64S32φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3248+(C3xC3:Dic3):3C2^2432,599
(C3×C3⋊Dic3)⋊4C22 = (S3×C6)⋊D6φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3248+(C3xC3:Dic3):4C2^2432,601
(C3×C3⋊Dic3)⋊5C22 = S3×C327D4φ: C22/C1C22 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3):5C2^2432,684
(C3×C3⋊Dic3)⋊6C22 = C6223D6φ: C22/C1C22 ⊆ Out C3×C3⋊Dic336(C3xC3:Dic3):6C2^2432,686
(C3×C3⋊Dic3)⋊7C22 = C6224D6φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3):7C2^2432,696
(C3×C3⋊Dic3)⋊8C22 = S32×Dic3φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3488-(C3xC3:Dic3):8C2^2432,594
(C3×C3⋊Dic3)⋊9C22 = S3×C6.D6φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3248+(C3xC3:Dic3):9C2^2432,595
(C3×C3⋊Dic3)⋊10C22 = C3×S3×C3⋊D4φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3):10C2^2432,658
(C3×C3⋊Dic3)⋊11C22 = S32×C12φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3484(C3xC3:Dic3):11C2^2432,648
(C3×C3⋊Dic3)⋊12C22 = S3×C6×Dic3φ: C22/C2C2 ⊆ Out C3×C3⋊Dic348(C3xC3:Dic3):12C2^2432,651
(C3×C3⋊Dic3)⋊13C22 = C3⋊S3×D12φ: C22/C2C2 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3):13C2^2432,672
(C3×C3⋊Dic3)⋊14C22 = C2×C337D4φ: C22/C2C2 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3):14C2^2432,681
(C3×C3⋊Dic3)⋊15C22 = C123S32φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3484(C3xC3:Dic3):15C2^2432,691
(C3×C3⋊Dic3)⋊16C22 = C2×C339D4φ: C22/C2C2 ⊆ Out C3×C3⋊Dic348(C3xC3:Dic3):16C2^2432,694
(C3×C3⋊Dic3)⋊17C22 = C4×S3×C3⋊S3φ: C22/C2C2 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3):17C2^2432,670
(C3×C3⋊Dic3)⋊18C22 = C2×S3×C3⋊Dic3φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3144(C3xC3:Dic3):18C2^2432,674
(C3×C3⋊Dic3)⋊19C22 = C2×C338(C2×C4)φ: C22/C2C2 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3):19C2^2432,679
(C3×C3⋊Dic3)⋊20C22 = C4×C324D6φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3484(C3xC3:Dic3):20C2^2432,690
(C3×C3⋊Dic3)⋊21C22 = C2×C339(C2×C4)φ: C22/C2C2 ⊆ Out C3×C3⋊Dic348(C3xC3:Dic3):21C2^2432,692
(C3×C3⋊Dic3)⋊22C22 = C3×D6⋊D6φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3484(C3xC3:Dic3):22C2^2432,650
(C3×C3⋊Dic3)⋊23C22 = C6×D6⋊S3φ: C22/C2C2 ⊆ Out C3×C3⋊Dic348(C3xC3:Dic3):23C2^2432,655
(C3×C3⋊Dic3)⋊24C22 = C3×D4×C3⋊S3φ: C22/C2C2 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3):24C2^2432,714
(C3×C3⋊Dic3)⋊25C22 = C6×C327D4φ: C22/C2C2 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3):25C2^2432,719
(C3×C3⋊Dic3)⋊26C22 = C3⋊S3×C2×C12φ: trivial image144(C3xC3:Dic3):26C2^2432,711

Non-split extensions G=N.Q with N=C3×C3⋊Dic3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3×C3⋊Dic3).1C22 = C322D24φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3248+(C3xC3:Dic3).1C2^2432,588
(C3×C3⋊Dic3).2C22 = C338SD16φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3248+(C3xC3:Dic3).2C2^2432,589
(C3×C3⋊Dic3).3C22 = C333Q16φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3488-(C3xC3:Dic3).3C2^2432,590
(C3×C3⋊Dic3).4C22 = S3×C322Q8φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3488-(C3xC3:Dic3).4C2^2432,603
(C3×C3⋊Dic3).5C22 = (S3×C6).D6φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3248+(C3xC3:Dic3).5C2^2432,606
(C3×C3⋊Dic3).6C22 = D6.S32φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3488-(C3xC3:Dic3).6C2^2432,607
(C3×C3⋊Dic3).7C22 = C33⋊D8φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3).7C2^2432,582
(C3×C3⋊Dic3).8C22 = C336SD16φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3).8C2^2432,583
(C3×C3⋊Dic3).9C22 = C337SD16φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3).9C2^2432,584
(C3×C3⋊Dic3).10C22 = C33⋊Q16φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3484(C3xC3:Dic3).10C2^2432,585
(C3×C3⋊Dic3).11C22 = C335(C2×Q8)φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3488-(C3xC3:Dic3).11C2^2432,604
(C3×C3⋊Dic3).12C22 = C336(C2×Q8)φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3248+(C3xC3:Dic3).12C2^2432,605
(C3×C3⋊Dic3).13C22 = D6.3S32φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3248+(C3xC3:Dic3).13C2^2432,609
(C3×C3⋊Dic3).14C22 = D6⋊S3⋊S3φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3488-(C3xC3:Dic3).14C2^2432,610
(C3×C3⋊Dic3).15C22 = D6.6S32φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3488-(C3xC3:Dic3).15C2^2432,611
(C3×C3⋊Dic3).16C22 = Dic3.S32φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3248+(C3xC3:Dic3).16C2^2432,612
(C3×C3⋊Dic3).17C22 = S3×C324Q8φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3144(C3xC3:Dic3).17C2^2432,660
(C3×C3⋊Dic3).18C22 = D12⋊(C3⋊S3)φ: C22/C1C22 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3).18C2^2432,662
(C3×C3⋊Dic3).19C22 = C329(S3×Q8)φ: C22/C1C22 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3).19C2^2432,666
(C3×C3⋊Dic3).20C22 = C12.58S32φ: C22/C1C22 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3).20C2^2432,669
(C3×C3⋊Dic3).21C22 = C62.91D6φ: C22/C1C22 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3).21C2^2432,676
(C3×C3⋊Dic3).22C22 = C62.93D6φ: C22/C1C22 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3).22C2^2432,678
(C3×C3⋊Dic3).23C22 = C3⋊S34Dic6φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3484(C3xC3:Dic3).23C2^2432,687
(C3×C3⋊Dic3).24C22 = C12⋊S312S3φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3484(C3xC3:Dic3).24C2^2432,688
(C3×C3⋊Dic3).25C22 = C62.96D6φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3).25C2^2432,693
(C3×C3⋊Dic3).26C22 = S3×C322C8φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3488-(C3xC3:Dic3).26C2^2432,570
(C3×C3⋊Dic3).27C22 = C335(C2×C8)φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3248+(C3xC3:Dic3).27C2^2432,571
(C3×C3⋊Dic3).28C22 = C33⋊M4(2)φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3488-(C3xC3:Dic3).28C2^2432,572
(C3×C3⋊Dic3).29C22 = C332M4(2)φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3248+(C3xC3:Dic3).29C2^2432,573
(C3×C3⋊Dic3).30C22 = D6.4S32φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3488-(C3xC3:Dic3).30C2^2432,608
(C3×C3⋊Dic3).31C22 = C3×C32⋊D8φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3).31C2^2432,576
(C3×C3⋊Dic3).32C22 = C3×C322SD16φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3).32C2^2432,577
(C3×C3⋊Dic3).33C22 = C3×C32⋊Q16φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3484(C3xC3:Dic3).33C2^2432,578
(C3×C3⋊Dic3).34C22 = C3×S3×Dic6φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3484(C3xC3:Dic3).34C2^2432,642
(C3×C3⋊Dic3).35C22 = C3×D125S3φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3484(C3xC3:Dic3).35C2^2432,643
(C3×C3⋊Dic3).36C22 = C3×D6.3D6φ: C22/C1C22 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3).36C2^2432,652
(C3×C3⋊Dic3).37C22 = C3×C3⋊S33C8φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3484(C3xC3:Dic3).37C2^2432,628
(C3×C3⋊Dic3).38C22 = C3×C32⋊M4(2)φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3484(C3xC3:Dic3).38C2^2432,629
(C3×C3⋊Dic3).39C22 = C6×C322C8φ: C22/C2C2 ⊆ Out C3×C3⋊Dic348(C3xC3:Dic3).39C2^2432,632
(C3×C3⋊Dic3).40C22 = C3×C62.C4φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3).40C2^2432,633
(C3×C3⋊Dic3).41C22 = C3×D12⋊S3φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3484(C3xC3:Dic3).41C2^2432,644
(C3×C3⋊Dic3).42C22 = C3⋊S3×Dic6φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3144(C3xC3:Dic3).42C2^2432,663
(C3×C3⋊Dic3).43C22 = C12.73S32φ: C22/C2C2 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3).43C2^2432,667
(C3×C3⋊Dic3).44C22 = C62.90D6φ: C22/C2C2 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3).44C2^2432,675
(C3×C3⋊Dic3).45C22 = C2×C334Q8φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3144(C3xC3:Dic3).45C2^2432,683
(C3×C3⋊Dic3).46C22 = C12.95S32φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3484(C3xC3:Dic3).46C2^2432,689
(C3×C3⋊Dic3).47C22 = C2×C335Q8φ: C22/C2C2 ⊆ Out C3×C3⋊Dic348(C3xC3:Dic3).47C2^2432,695
(C3×C3⋊Dic3).48C22 = C337(C2×C8)φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3484(C3xC3:Dic3).48C2^2432,635
(C3×C3⋊Dic3).49C22 = C334M4(2)φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3484(C3xC3:Dic3).49C2^2432,636
(C3×C3⋊Dic3).50C22 = C2×C334C8φ: C22/C2C2 ⊆ Out C3×C3⋊Dic348(C3xC3:Dic3).50C2^2432,639
(C3×C3⋊Dic3).51C22 = C3312M4(2)φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3).51C2^2432,640
(C3×C3⋊Dic3).52C22 = (C3×D12)⋊S3φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3144(C3xC3:Dic3).52C2^2432,661
(C3×C3⋊Dic3).53C22 = C12.40S32φ: C22/C2C2 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3).53C2^2432,665
(C3×C3⋊Dic3).54C22 = C3×Dic3.D6φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3484(C3xC3:Dic3).54C2^2432,645
(C3×C3⋊Dic3).55C22 = C3×D6.D6φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3484(C3xC3:Dic3).55C2^2432,646
(C3×C3⋊Dic3).56C22 = C3×D6.4D6φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3).56C2^2432,653
(C3×C3⋊Dic3).57C22 = C6×C322Q8φ: C22/C2C2 ⊆ Out C3×C3⋊Dic348(C3xC3:Dic3).57C2^2432,657
(C3×C3⋊Dic3).58C22 = C6×C324Q8φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3144(C3xC3:Dic3).58C2^2432,710
(C3×C3⋊Dic3).59C22 = C3×C12.59D6φ: C22/C2C2 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3).59C2^2432,713
(C3×C3⋊Dic3).60C22 = C3×C12.D6φ: C22/C2C2 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3).60C2^2432,715
(C3×C3⋊Dic3).61C22 = C3×Q8×C3⋊S3φ: C22/C2C2 ⊆ Out C3×C3⋊Dic3144(C3xC3:Dic3).61C2^2432,716
(C3×C3⋊Dic3).62C22 = C3×C12.26D6φ: trivial image144(C3xC3:Dic3).62C2^2432,717

׿
×
𝔽