extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C3⋊Dic3)⋊1C22 = S3×C3⋊D12 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 8+ | (C3xC3:Dic3):1C2^2 | 432,598 |
(C3×C3⋊Dic3)⋊2C22 = S3×D6⋊S3 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 48 | 8- | (C3xC3:Dic3):2C2^2 | 432,597 |
(C3×C3⋊Dic3)⋊3C22 = D6⋊4S32 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 8+ | (C3xC3:Dic3):3C2^2 | 432,599 |
(C3×C3⋊Dic3)⋊4C22 = (S3×C6)⋊D6 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 8+ | (C3xC3:Dic3):4C2^2 | 432,601 |
(C3×C3⋊Dic3)⋊5C22 = S3×C32⋊7D4 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 72 | | (C3xC3:Dic3):5C2^2 | 432,684 |
(C3×C3⋊Dic3)⋊6C22 = C62⋊23D6 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 36 | | (C3xC3:Dic3):6C2^2 | 432,686 |
(C3×C3⋊Dic3)⋊7C22 = C62⋊24D6 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 4 | (C3xC3:Dic3):7C2^2 | 432,696 |
(C3×C3⋊Dic3)⋊8C22 = S32×Dic3 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 48 | 8- | (C3xC3:Dic3):8C2^2 | 432,594 |
(C3×C3⋊Dic3)⋊9C22 = S3×C6.D6 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 8+ | (C3xC3:Dic3):9C2^2 | 432,595 |
(C3×C3⋊Dic3)⋊10C22 = C3×S3×C3⋊D4 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 4 | (C3xC3:Dic3):10C2^2 | 432,658 |
(C3×C3⋊Dic3)⋊11C22 = S32×C12 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | 4 | (C3xC3:Dic3):11C2^2 | 432,648 |
(C3×C3⋊Dic3)⋊12C22 = S3×C6×Dic3 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | | (C3xC3:Dic3):12C2^2 | 432,651 |
(C3×C3⋊Dic3)⋊13C22 = C3⋊S3×D12 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 72 | | (C3xC3:Dic3):13C2^2 | 432,672 |
(C3×C3⋊Dic3)⋊14C22 = C2×C33⋊7D4 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 72 | | (C3xC3:Dic3):14C2^2 | 432,681 |
(C3×C3⋊Dic3)⋊15C22 = C12⋊3S32 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | 4 | (C3xC3:Dic3):15C2^2 | 432,691 |
(C3×C3⋊Dic3)⋊16C22 = C2×C33⋊9D4 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | | (C3xC3:Dic3):16C2^2 | 432,694 |
(C3×C3⋊Dic3)⋊17C22 = C4×S3×C3⋊S3 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 72 | | (C3xC3:Dic3):17C2^2 | 432,670 |
(C3×C3⋊Dic3)⋊18C22 = C2×S3×C3⋊Dic3 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 144 | | (C3xC3:Dic3):18C2^2 | 432,674 |
(C3×C3⋊Dic3)⋊19C22 = C2×C33⋊8(C2×C4) | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 72 | | (C3xC3:Dic3):19C2^2 | 432,679 |
(C3×C3⋊Dic3)⋊20C22 = C4×C32⋊4D6 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | 4 | (C3xC3:Dic3):20C2^2 | 432,690 |
(C3×C3⋊Dic3)⋊21C22 = C2×C33⋊9(C2×C4) | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | | (C3xC3:Dic3):21C2^2 | 432,692 |
(C3×C3⋊Dic3)⋊22C22 = C3×D6⋊D6 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | 4 | (C3xC3:Dic3):22C2^2 | 432,650 |
(C3×C3⋊Dic3)⋊23C22 = C6×D6⋊S3 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | | (C3xC3:Dic3):23C2^2 | 432,655 |
(C3×C3⋊Dic3)⋊24C22 = C3×D4×C3⋊S3 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 72 | | (C3xC3:Dic3):24C2^2 | 432,714 |
(C3×C3⋊Dic3)⋊25C22 = C6×C32⋊7D4 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 72 | | (C3xC3:Dic3):25C2^2 | 432,719 |
(C3×C3⋊Dic3)⋊26C22 = C3⋊S3×C2×C12 | φ: trivial image | 144 | | (C3xC3:Dic3):26C2^2 | 432,711 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C3⋊Dic3).1C22 = C32⋊2D24 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 8+ | (C3xC3:Dic3).1C2^2 | 432,588 |
(C3×C3⋊Dic3).2C22 = C33⋊8SD16 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 8+ | (C3xC3:Dic3).2C2^2 | 432,589 |
(C3×C3⋊Dic3).3C22 = C33⋊3Q16 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 48 | 8- | (C3xC3:Dic3).3C2^2 | 432,590 |
(C3×C3⋊Dic3).4C22 = S3×C32⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 48 | 8- | (C3xC3:Dic3).4C2^2 | 432,603 |
(C3×C3⋊Dic3).5C22 = (S3×C6).D6 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 8+ | (C3xC3:Dic3).5C2^2 | 432,606 |
(C3×C3⋊Dic3).6C22 = D6.S32 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 48 | 8- | (C3xC3:Dic3).6C2^2 | 432,607 |
(C3×C3⋊Dic3).7C22 = C33⋊D8 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 4 | (C3xC3:Dic3).7C2^2 | 432,582 |
(C3×C3⋊Dic3).8C22 = C33⋊6SD16 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 4 | (C3xC3:Dic3).8C2^2 | 432,583 |
(C3×C3⋊Dic3).9C22 = C33⋊7SD16 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 4 | (C3xC3:Dic3).9C2^2 | 432,584 |
(C3×C3⋊Dic3).10C22 = C33⋊Q16 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 48 | 4 | (C3xC3:Dic3).10C2^2 | 432,585 |
(C3×C3⋊Dic3).11C22 = C33⋊5(C2×Q8) | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 48 | 8- | (C3xC3:Dic3).11C2^2 | 432,604 |
(C3×C3⋊Dic3).12C22 = C33⋊6(C2×Q8) | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 8+ | (C3xC3:Dic3).12C2^2 | 432,605 |
(C3×C3⋊Dic3).13C22 = D6.3S32 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 8+ | (C3xC3:Dic3).13C2^2 | 432,609 |
(C3×C3⋊Dic3).14C22 = D6⋊S3⋊S3 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 48 | 8- | (C3xC3:Dic3).14C2^2 | 432,610 |
(C3×C3⋊Dic3).15C22 = D6.6S32 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 48 | 8- | (C3xC3:Dic3).15C2^2 | 432,611 |
(C3×C3⋊Dic3).16C22 = Dic3.S32 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 8+ | (C3xC3:Dic3).16C2^2 | 432,612 |
(C3×C3⋊Dic3).17C22 = S3×C32⋊4Q8 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 144 | | (C3xC3:Dic3).17C2^2 | 432,660 |
(C3×C3⋊Dic3).18C22 = D12⋊(C3⋊S3) | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 72 | | (C3xC3:Dic3).18C2^2 | 432,662 |
(C3×C3⋊Dic3).19C22 = C32⋊9(S3×Q8) | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 72 | | (C3xC3:Dic3).19C2^2 | 432,666 |
(C3×C3⋊Dic3).20C22 = C12.58S32 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 72 | | (C3xC3:Dic3).20C2^2 | 432,669 |
(C3×C3⋊Dic3).21C22 = C62.91D6 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 72 | | (C3xC3:Dic3).21C2^2 | 432,676 |
(C3×C3⋊Dic3).22C22 = C62.93D6 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 72 | | (C3xC3:Dic3).22C2^2 | 432,678 |
(C3×C3⋊Dic3).23C22 = C3⋊S3⋊4Dic6 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 48 | 4 | (C3xC3:Dic3).23C2^2 | 432,687 |
(C3×C3⋊Dic3).24C22 = C12⋊S3⋊12S3 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 48 | 4 | (C3xC3:Dic3).24C2^2 | 432,688 |
(C3×C3⋊Dic3).25C22 = C62.96D6 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 4 | (C3xC3:Dic3).25C2^2 | 432,693 |
(C3×C3⋊Dic3).26C22 = S3×C32⋊2C8 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 48 | 8- | (C3xC3:Dic3).26C2^2 | 432,570 |
(C3×C3⋊Dic3).27C22 = C33⋊5(C2×C8) | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 8+ | (C3xC3:Dic3).27C2^2 | 432,571 |
(C3×C3⋊Dic3).28C22 = C33⋊M4(2) | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 48 | 8- | (C3xC3:Dic3).28C2^2 | 432,572 |
(C3×C3⋊Dic3).29C22 = C33⋊2M4(2) | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 8+ | (C3xC3:Dic3).29C2^2 | 432,573 |
(C3×C3⋊Dic3).30C22 = D6.4S32 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 48 | 8- | (C3xC3:Dic3).30C2^2 | 432,608 |
(C3×C3⋊Dic3).31C22 = C3×C32⋊D8 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 4 | (C3xC3:Dic3).31C2^2 | 432,576 |
(C3×C3⋊Dic3).32C22 = C3×C32⋊2SD16 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 4 | (C3xC3:Dic3).32C2^2 | 432,577 |
(C3×C3⋊Dic3).33C22 = C3×C32⋊Q16 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 48 | 4 | (C3xC3:Dic3).33C2^2 | 432,578 |
(C3×C3⋊Dic3).34C22 = C3×S3×Dic6 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 48 | 4 | (C3xC3:Dic3).34C2^2 | 432,642 |
(C3×C3⋊Dic3).35C22 = C3×D12⋊5S3 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 48 | 4 | (C3xC3:Dic3).35C2^2 | 432,643 |
(C3×C3⋊Dic3).36C22 = C3×D6.3D6 | φ: C22/C1 → C22 ⊆ Out C3×C3⋊Dic3 | 24 | 4 | (C3xC3:Dic3).36C2^2 | 432,652 |
(C3×C3⋊Dic3).37C22 = C3×C3⋊S3⋊3C8 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | 4 | (C3xC3:Dic3).37C2^2 | 432,628 |
(C3×C3⋊Dic3).38C22 = C3×C32⋊M4(2) | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | 4 | (C3xC3:Dic3).38C2^2 | 432,629 |
(C3×C3⋊Dic3).39C22 = C6×C32⋊2C8 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | | (C3xC3:Dic3).39C2^2 | 432,632 |
(C3×C3⋊Dic3).40C22 = C3×C62.C4 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 24 | 4 | (C3xC3:Dic3).40C2^2 | 432,633 |
(C3×C3⋊Dic3).41C22 = C3×D12⋊S3 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | 4 | (C3xC3:Dic3).41C2^2 | 432,644 |
(C3×C3⋊Dic3).42C22 = C3⋊S3×Dic6 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 144 | | (C3xC3:Dic3).42C2^2 | 432,663 |
(C3×C3⋊Dic3).43C22 = C12.73S32 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 72 | | (C3xC3:Dic3).43C2^2 | 432,667 |
(C3×C3⋊Dic3).44C22 = C62.90D6 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 72 | | (C3xC3:Dic3).44C2^2 | 432,675 |
(C3×C3⋊Dic3).45C22 = C2×C33⋊4Q8 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 144 | | (C3xC3:Dic3).45C2^2 | 432,683 |
(C3×C3⋊Dic3).46C22 = C12.95S32 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | 4 | (C3xC3:Dic3).46C2^2 | 432,689 |
(C3×C3⋊Dic3).47C22 = C2×C33⋊5Q8 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | | (C3xC3:Dic3).47C2^2 | 432,695 |
(C3×C3⋊Dic3).48C22 = C33⋊7(C2×C8) | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | 4 | (C3xC3:Dic3).48C2^2 | 432,635 |
(C3×C3⋊Dic3).49C22 = C33⋊4M4(2) | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | 4 | (C3xC3:Dic3).49C2^2 | 432,636 |
(C3×C3⋊Dic3).50C22 = C2×C33⋊4C8 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | | (C3xC3:Dic3).50C2^2 | 432,639 |
(C3×C3⋊Dic3).51C22 = C33⋊12M4(2) | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 24 | 4 | (C3xC3:Dic3).51C2^2 | 432,640 |
(C3×C3⋊Dic3).52C22 = (C3×D12)⋊S3 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 144 | | (C3xC3:Dic3).52C2^2 | 432,661 |
(C3×C3⋊Dic3).53C22 = C12.40S32 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 72 | | (C3xC3:Dic3).53C2^2 | 432,665 |
(C3×C3⋊Dic3).54C22 = C3×Dic3.D6 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | 4 | (C3xC3:Dic3).54C2^2 | 432,645 |
(C3×C3⋊Dic3).55C22 = C3×D6.D6 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | 4 | (C3xC3:Dic3).55C2^2 | 432,646 |
(C3×C3⋊Dic3).56C22 = C3×D6.4D6 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 24 | 4 | (C3xC3:Dic3).56C2^2 | 432,653 |
(C3×C3⋊Dic3).57C22 = C6×C32⋊2Q8 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 48 | | (C3xC3:Dic3).57C2^2 | 432,657 |
(C3×C3⋊Dic3).58C22 = C6×C32⋊4Q8 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 144 | | (C3xC3:Dic3).58C2^2 | 432,710 |
(C3×C3⋊Dic3).59C22 = C3×C12.59D6 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 72 | | (C3xC3:Dic3).59C2^2 | 432,713 |
(C3×C3⋊Dic3).60C22 = C3×C12.D6 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 72 | | (C3xC3:Dic3).60C2^2 | 432,715 |
(C3×C3⋊Dic3).61C22 = C3×Q8×C3⋊S3 | φ: C22/C2 → C2 ⊆ Out C3×C3⋊Dic3 | 144 | | (C3xC3:Dic3).61C2^2 | 432,716 |
(C3×C3⋊Dic3).62C22 = C3×C12.26D6 | φ: trivial image | 144 | | (C3xC3:Dic3).62C2^2 | 432,717 |